
Maximizing Expected Utility for Stochastic Combinatorial Optimization Problems

Jian Li
Institute for Interdisciplinary Information Sciences

Tsinghua University, Beijing, P.R.China
Email: lapordge@gmail.com

Amol Deshpande
Department of Computer Science

University of Maryland, College Park, USA
Email: amol@cs.umd.edu

Abstract— We study the stochastic versions of a broad class
of combinatorial problems where the weights of the elements in
the input dataset are uncertain. The class of problems that we
study includes shortest paths, minimum weight spanning trees,
and minimum weight matchings over probabilistic graphs, and
other combinatorial problems like knapsack. We observe that the
expected value is inadequate in capturing different types of risk-
averse or risk-prone behaviors, and instead we consider a more
general objective which is to maximize the expected utility of the
solution for some given utility function, rather than the expected
weight (expected weight becomes a special case). We show that
we can obtain a polynomial time approximation algorithm with
additive error ε for any ε > 0, if there is a pseudopolynomial time
algorithm for the exact version of the problem (This is true for the
problems mentioned above) and the maximum value of the utility
function is bounded by a constant. Our result generalizes several
prior results on stochastic shortest path, stochastic spanning tree,
and stochastic knapsack. Our algorithm for utility maximization
makes use of the separability of exponential utility and a technique
to decompose a general utility function into exponential utility
functions, which may be useful in other stochastic optimization
problems.

1. INTRODUCTION

The most common approach to deal with optimization
problems in presence of uncertainty is to optimize the
expected value of the solution. However, expected value
is inadequate in expressing diverse people’s preferences
towards decision-making under uncertain scenarios. In par-
ticular, it fails at capturing different risk-averse or risk-
prone behaviors that are commonly observed. Consider the
following simple example where we have two lotteries L1

and L2. In L1, the player could win 1000 dollars with
probability 1.0, while in L2 the player could win 2000
dollars with probability 0.5 and 0 dollars otherwise. It is
easy to see that both have the same expected payoff of 1000
dollars. However, many, if not most, people would treat L1

and L2 as two completely different choices. Specifically,
a risk-averse player is likely to choose L1 and a risk-
prone player may prefer L2 (Consider a gambler who would
like to spend 1000 dollars to play double-or-nothing). A
more involved but also more surprising example is the St.
Petersburg paradox (see e.g., [35], [1]) which has been
widely used in the economics literature as a criticism of
expected value. These observations and criticisms have led
researchers, especially in Economics, to study the problem

from a more fundamental perspective and to directly max-
imize user satisfaction, often called utility. The uncertainty
present in the problem instance naturally leads us to optimize
the expected utility.

Let F be the set of feasible solutions to an optimization
problem. Each solution S ∈ F is associated with a random
weight w(S). For instance, F could be a set of lotteries and
w(S) is the (random) payoff of lottery S. We model the risk
awareness of a user by a utility function µ : R→ R: the user
obtains µ(x) units of utility if the outcome is x, i.e., w(S) =
x. Formally, the expected utility maximization principle is
simply stated as follows: the most desirable solution S is
the one that maximizes the expected utility, i.e.,

S = arg max
S′∈F

E[µ(w(S′))]

Indeed, the expected utility theory is a branch of the utility
theory that studies “betting preferences” of people with
regard to uncertain outcomes (gambles). The theory was for-
mally initiated by von Neumann and Morgenstern in 1940s
[51], [20] who gave an axiomatization of the theory (known
as von Neumann-Morgenstern expected utility theorem). The
theory is well known to be versatile in expressing diverse
risk-averse or risk-prone behaviors.

In this paper, we focus on the following broad class
of combinatorial optimization problems. The deterministic
version of the problem has the following form: we are given
a ground set of elements U = {ei}i=1...n; each element e
is associated with a weight we; each feasible solution is
a subset of the elements satisfying some property. Let F
denote the set of feasible solutions. The objective for the
deterministic problem is to find a feasible solution S with
the minimum total weight w(S) =

∑
e∈S we. We can see

that many combinatorial problems such as shortest path,
minimum spanning tree, and minimum weight matching
belong to this class. In the stochastic version of the problem,
the weight we of each element e is a nonnegative random
variable. We assume all wes are independent of each other.
We use pe(.) to denote the probability density function
for we (or probability mass function in discrete case). We
are also given a utility function µ : R+ → R+ which
maps a weight value to a utility value. By the expected
utility maximization principle, our goal here is to find a

feasible solution S ∈ F that maximizes the expected utility,
i.e., E[µ(w(S))]. We call this problem the expected utility
maximization (EUM) problem.

Let us use the following toy example to illustrate the
rationale behind EUM. There is a graph with two nodes
s and t and two parallel links e1 and e2. Edge e1 has a
fixed length 1 while the length of e2 is 0.9 with probability
0.9 and 1.9 with probability 0.1 (the expected value is also
1). We want to choose one edge to connect s and t. It is
not hard to imagine that a risk-averse user would choose
e1 since e2 may turn out to be a much larger value with a
nontrivial probability. We can capture such behavior using
the utility function (1) (defined in Section 1.1). Similarly, we
can capture the risk-prone behavior by using, for example,
the utility function µ(x) = 1

x+1 . It is easy to see that e1
maximizes the expected utility in the former case, and e2 in
the latter.

1.1. Our Contributions

We discuss in detail our result for EUM. We assume µ
is part of the specification of the problem but not part of
the input. Moreover, we assume limx→∞ µ(x) = 0. This
captures the fact that if the weight of solution is too large, it
becomes almost useless for us. W.l.o.g. we can also assume
0 ≤ µ(x) ≤ 1 for x ≥ 0, by scaling. We say a function µ̃(x)
is an ε-approximation of µ(x) if |µ̃(x)− µ(x)| ≤ ε∀x ≥ 0.
For ease of exposition, we let µ̃(x) be a complex function.
Recall that a polynomial time approximation scheme (PTAS)
is an algorithm which takes an instance of a minimization
problem and a parameter ε and produces a solution whose
cost is within a factor 1+ε of the optimum, and the running
time, for any fixed ε, is polynomial in the size of the
input. We use A to denote the deterministic combinatorial
optimization problem under consideration. The exact version
of a problem A asks the question whether there is a feasible
solution of A with weight exactly equal to a given number
K. We say an algorithm runs in pseudopolynomial time for
the exact version of A if the running time is polynomial in
n and K. Our first main theorem is the following.

Theorem 1: Assume that there is a pseudopolynomial
algorithm for the exact version of A. Further assume that
given any ε > 0, we can find an ε-approximation of the
utility function µ as µ̃(x) =

∑L
k=1 ckφ

x
k , where L is a

constant and |φk| ≤ 1∀k; φk may be complex numbers.
Then, there is an algorithm that runs in time (n/ε)O(L) that
approximates EUM(A) with an additive error O(ε). If the
optimal expected utility is Θ(1), we obtain a PTAS.

For many combinatorial problems, a pseudopolynomial
algorithm for the exact version is known. Examples include
shortest path, spanning tree, matching and knapsack. Hence,
the only task left is to find a short exponential sum that
ε-approximates µ. For this purpose, we adopt the Fourier
series technique. However, the technique cannot be used

directly since it works only for periodic functions with
bounded periodicities. In order to get a good approximation
for x ∈ [0,∞), we leverage the fact that limx→∞ µ(x) = 0
and develop a general framework that uses the Fourier series
decomposition as a subroutine. Generally speaking, such
an approximation is only possible if the function is “well
behaved”, i.e., it satisfies some continuity or smoothness
conditions. In particular, we prove Theorem 2. We say that
the utility function µ satisfies the α-Hölder condition if
|µ(x)− µ(y)| ≤ C |x− y|α, for some constant C and some
constant α.

Theorem 2: If µ satisfies the α-Hölder condition for some
constant α > 1/2, then, for any ε > 0, we can obtain
an exponential sum with O(poly(1

ε)) terms which is an ε-
approximation of µ for x ≥ 0.

Consider the utility function

χ̃(x) =

 1 x ∈ [0, 1]
−xδ + 1

δ + 1 x ∈ [1, 1 + δ]
0 x > 1 + δ

(1)

where δ > 0 is a small constant (See Figure 1(1)). We
can verify that χ̃ satisfies 1-Hölder condition with C = 1

δ .
Therefore, Theorem 2 is applicable. This example is inter-
esting since it can be viewed as a continuous variant of

the threshold function χ(x) =

{
1 x ∈ [0, 1]
0 x > 1

, for which

maximizing the expected utility is equivalent to maximizing
Pr(w(S) ≤ 1). This special case has been considered
several times in literature for various problems including
stochastic shortest path [41], stochastic spanning tree [28],
[22], stochastic knapsack [23] and some other stochastic
problems [3], [39].

It is interesting to compare our result with the result for
the stochastic shortest path problem considered by Nikolova
et al. [41], [39]. In [41], they show that there is an exact
O(nlogn) time algorithm for maximizing the probability that
the length of the path is at most 1, i.e., Pr(w(S) ≤ 1),
assuming all edges are normally distributed and there is a
path with its mean at most 1. Later, Nikolova [39] extends
the result to an FPTAS for any problem under the same
assumptions, if the deterministic version of the problem
has a polynomial time exact algorithm. We can see that
under such assumptions, the optimal probability is at least
1/2.1 Therefore, provided the same assumption and further
assuming that Pr(we < 0) is miniscule,2 our algorithm is
a PTAS for the continuous variant of the problem. Indeed,
we can translate this result to a bi-criterion approximation
result of the following form: for any fixed δ, ε > 0, we can

1The sum of multiple Gaussians is also a Gaussian. Hence, if we assume
the mean of the length of a path (which is a Gaussian) is at most 1, the
probability that the length of the path is at most 1 is at least 1/2.

2Our technique can only handle distributions with positive supports.
Thus, we have to assume that the probability that a negative value appears
is miniscule and can be safely ignored.

Figure 1. (1) The utility function χ̃(x), a continuous variant of the threshold function χ(x); (2) A smoother variant of χ(x); (3) The utility function
χ̃2(x), a continuous variant of the 2-d threshold function χ2(x).

find in polynomial time a solution S such that

Pr(w(S) ≤ 1 + δ) ≥ (1− ε) Pr(w(S∗) ≤ 1).

where S∗ is the optimal solution (Corollary 2). We note
that such a bi-criterion approximation was only known for
exponentially distributed edges before [41].

Let us consider another application of our results to
the stochastic knapsack problems defined in [23]. Given
a set U of independent random variables {x1, . . . , xn},
with associated profits {v1, . . . , vn} and an overflow prob-
ability γ, we are asked to pick a subset S of U such
that Pr(

∑
i∈S xi ≥ 1) ≤ γ and the total profit

∑
i∈S vi

is maximized. Goel and Indyk [23] showed that, for any
ε > 0, there is a polynomial time algorithm that can
find a solution S with the profit as least the optimum
and Pr(

∑
i∈S xi ≥ 1 + ε) ≤ γ(1 + ε) for exponentially

distributed variables. They also gave a quasi-polynomial
time approximation scheme for Bernoulli distributed random
variables. Quite recently, in parallel with our work, Bhalgat
et al. [12] obtained the same result for arbitrary distributions
under the assumption that γ = Θ(1). Their technique is
based on discretizing the distributions and is quite involved.
Our result, applied to stochastic knapsack, matches that of
Bhalgat et al. We remark that our algorithm is much simpler
and has a much better running time (Theorem 5). Despite a
little loss in the approximation guarantees in some cases, our
technique can be applied to almost all positive probability
distributions, and a much richer class of utility functions.

Equally importantly, we can extend our basic approxi-
mation scheme to handle generalizations such as multiple
utility functions and multidimensional weights. Interest-
ing applications of these extensions include generalizations
of stochastic knapsack, such as stochastic multiple knap-
sack (Theorem 8) and stochastic multidimensional knapsack
(stochastic packing) (Theorem 9).

1.2. Related Work

In recent years stochastic optimization problems have
drawn much attention from the computer science community
and stochastic versions of many classical combinatorial opti-
mization problems have been studied. In particular, a signif-
icant portion of the efforts has been devoted to the two-stage
stochastic optimization problem. In such a problem, in a first
stage, we are given probabilistic information about the input

but the cost of selecting an item is low; in a second stage,
the actual input is revealed but the costs for the elements are
higher. We are asked to make decision after each stage and
minimize the expected cost. Some general techniques have
been developed [26], [46]. We refer interested reader to [50]
for a comprehensive survey. Another widely studied type
of problems considers designing adaptive probing policies
for stochastic optimization problems where the existence or
the exact weight of an element can be only known upon a
probe. There is typically a budget for the number of probes
(see e.g., [25], [17]), or we require an irrevocable decision
whether to include the probed element in the solution right
after the probe (see e.g., [19], [15], [5], [18], [12]). However,
most of those works focus on optimizing the expected value
of the solution. There is also sporadic work on optimizing
the overflow probability or some other objectives subject
to the overflow probability constraints. In particular, a few
recent works have explicitly motivated such objectives as a
way to capture the risk-averse type of behaviors [3], [39],
[49]. Besides those works, there has been little work on
optimizing more general utility functions for combinatorial
stochastic optimization problems from an approximation
algorithms perspective.

The most related work to ours is the stochastic short-
est path problem (Stoch-SP), which was also the initial
motivation for this work. The problem has been studied
extensively for several special utility functions in operation
research community. Sigal et al. [47] studied the problem
of finding the path with greatest probability of being the
shortest path. Loui [34] showed that Stoch-SP reduces to the
shortest path (and sometimes longest path) problem if the
utility function is linear or exponential. Nikolova et al. [40]
identified more specific utility and distribution combinations
that can be solved optimally in polynomial time. Much work
considered dealing with more general utility functions, such
as piecewise linear or concave functions, e.g., [37], [38], [7].
However, these algorithms are essentially heuristics and the
worst case running times are still exponential. Nikolova et
al. [41] studied the problem of maximizing the probability
that the length of the chosen path is less than some given
parameter. Besides the result we mentioned before, they also
considered Poisson and exponential distributions. Despite
much effort on this problem, no algorithm is known to run in
polynomial time and have provable performance guarantees,

especially for more general utility functions or more general
distributions. This is perhaps because the hardness comes
from different sources, as also noted in [41]: the shortest
path selection per se is combinatorial; the distribution of the
length of a path is the convolution of the distributions of its
edges; the objective is nonlinear; to list a few.

Kleinberg et al. [30] first considered the stochastic knap-
sack problem with Bernoulli-type distributions and provided
a polynomial-time O(log 1/γ) approximation where γ is
the given overflow probability. For item sizes with expo-
nential distributions, Goel and Indyk [23] provided a bi-
criterion PTAS, and for Bernoulli-distributed items they
gave a quasi-polynomial approximation scheme. Chekuri
and Khanna [14] pointed out that a PTAS can be obtained
for the Bernoulli case using their techniques for the multiple
knapsack problem. Goyal and Ravi [24] showed a PTAS
for Gaussian distributed sizes. Quite recently, Bhalgat, Goel
and Khanna [12] developed a general discretizaton technique
that reduces the distributions to a small number of equivalent
classes which we can efficiently enumerate for both adaptive
and nonadaptive versions of stochastic knapsack. They used
this technique to obtain improved results for several variants
of stochastic knapsack, notably a bi-criterion PTAS for the
adaptive version of the problem. Dean at al. [19] gave
the first constant approximation for the adaptive version
of stochastic knapsack. The adaptive version of stochas-
tic multidimensional knapsack (or equivalently stochastic
packing) has been considered in [18], [12] where constant
approximations and a bi-criterion PTAS were developed.

This work is partially inspired by our prior work on top-
k and other queries over probabilistic datasets [31], [33].
In fact, we can show that both the consensus answers
proposed in [31] and the parameterized ranking functions
proposed in [33] follow the expected utility maximization
principle where the utility functions are materialized as
distance metrics for the former and the weight functions
for the latter. Our technique for approximating the utility
functions is also similar to the approximation scheme used
in [33] in spirit. However, no performance guarantees are
provided in that work.

There is a large volume of work on approximating
functions using short exponential sums over a bounded
domain, e.g., [42], [8], [9], [10]. Some works also consider
using linear combinations of Gaussians or other kernels to
approximate functions with finite support over the entire
real axis (−∞,+∞) [16]. This is however impossible using
exponentials since αx is either periodic (if |α| = 1) or
approaches to infinity when x → +∞ or x → −∞ (if
|α| 6= 1).

2. ALGORITHM

We first note that EUM is #P-hard in general since the
problem of computing the overflow probability of a set of

items with Bernoulli distributions, a very special case of our
problem, is #P-hard [30].

Our approach is very simple. We first observe that the
problem is easy if the utility function is an exponential
function. We approximate the utility function µ(x) by a short
exponential sum, i.e.,

∑L
i=1 ciφ

x
i with L being a constant (ci

and φi may be complex numbers). Hence, E[µ(w(S))] can
be approximated by

∑L
i=1 ciE[φ

w(S)
i]. Then, we consider

the following multi-criterion version of the problem with
L objectives {E[φ

w(S)
i]}i=1,...,L: given L complex num-

bers v1, . . . , vL, we want to find a solution S such that
E[φ

w(S)
i] ≈ vi for i = 1, . . . , L. We achieve this by utilizing

the pseudopolynomial time algorithm for the exact version
of the problem. We argue that we only need to consider a
polynomial number of v1, . . . , vL combinations (which we
call configurations) to find out the approximate optimum. In
Section 2.1, we show how to solve the multi-criterion prob-
lem provided that a short exponential sum approximation of
µ is given. In particular, we prove Theorem 1. Then, we
show how to approximate µ by a short exponential sum by
proving Theorem 2 in Section 2.2 and Section 2.3.

Let us first consider the exponential utility function
µ(x) = αx for any α ∈ C. Fix an arbitrary solution S
and α > 0. Due to the independence of the elements, we
can see that

E[αw(S)] = E[α
∑
e∈S we] = E[

∏
e∈S

αwe] =
∏
e∈S

E[αwe]

Taking log on both sides, we get logE[αw(S)] =∑
e∈S logE[αwe]. If α is a positive real number and

E[αwe] ≤ 1 (or equivalently, − logE[αwe] ≥ 0), this reduces
to the deterministic optimization problem.

We still need to show how to compute E[αwe]. If we is
a discrete random variable with a polynomial size support,
we can easily compute E[αwe] in polynomial time. If we
has an infinite discrete or continuous support, we can not
compute E[αwe] directly and may need to approximate it.
We leave the discussion of the issue to the full version of
the paper [32].

2.1. Proof of Theorem 1

Now, we prove Theorem 1. We start with some notations.
We use |c| and arg(c) to denote the absolute value and the
argument of the complex number c, respectively. In other
words, c = |c|(cos(arg(c)) + i sin(arg(c)))) = |c|ei arg(c).
We always require arg(c) ∈ [0, 2π) for any c ∈ C.
Recall that we say the exponential sum

∑L
i=1 ciφ

x
i is an

ε-approximation for µ(x) if the following holds:

|µ(x)−
L∑
i=1

ciφ
x
i | ≤ ε ∀x ≥ 0

We first show that if the utility function can be de-
composed exactly into a short exponential sum, we can
approximate the optimal expected utility well.

Theorem 3: Assume µ̃(x) =
∑L
k=1 ckφ

x
k is the utility

function where |φk| ≤ 1 for 1 ≤ k ≤ L. We also
assume that there is a pseudopolynomial algorithm for the
exact version of A. Then, for any ε > 0, there is an
algorithm that runs in time (n/ε)O(L) and finds a solu-
tion S such that |E[µ̃(w(S))] − E[µ̃(w(S̃))]| < ε where
S̃ = arg maxS′ |E[µ̃(w(S′))|.

We use the scaling and rounding technique that has
been used often in multi-criterion optimization problems
(e.g., [45], [43]). Since our objective function is not ad-
ditive and not monotone, the general results for multi-
criterion optimization [43], [36], [45], [2] do not directly
apply here. We briefly sketch our algorithm. Let γ =
δ = ε

Ln . For each e ∈ U , we associate it with a 2L
dimensional integer vector 〈a1(e), b1(e), . . . , aL(e), bL(e)〉
where ai(e) = b− ln |E[φwei]|

γ c and bi(e) = b arg(E[φ
we
i])

δ c.
ai(e) and bi(e) are the scaled and rounded versions of
− ln |E[φwei]| and arg(E[φwei]), respectively. Since |φi| ≤ 1,
we can see that ai(e) ≥ 0 for any e ∈ U . We maintain
(JK)L configurations where J = d− ln(ε/L)

γ e and K =

d 2πnδ e. The number of configurations is (n/ε)O(L). Each
configuration σ(a) is indexed by a 2L-dimensional vector
a = 〈α1, β1, . . . , αL, βL〉 where 1 ≤ αi ≤ J and 1 ≤
βi ≤ K for i = 1, . . . , L. In other words, the configurations
are σ(〈1, 1, . . . , 1, 1〉), . . . , σ(〈J,K, . . . , J,K〉)). For vector
a = 〈α1, β1, . . . , αL, βL〉, configuration σ(a) = 1 if and
only if there is a feasible solution S ∈ F such that for all j =
1, . . . , L, βj =

∑
e∈S bj(e), and αj = min(J,

∑
e∈S aj(e)).

Otherwise, σ(a) = 0. Lemma 1 tells us the expected utility
for the rounded instance is close to the true value of the
expected utility. Lemma 2 shows we can compute those
configurations in polynomial time. The missing proofs can
be found in the full version of the paper [32].

Lemma 1: For vector a = 〈α1, β1, . . . , αL, βL〉, σv(a) =
1 if and only if there is a solution S such that |E[µ̃(w(S))]−∑L
k=1 cke

−αkγ+iβkδ| ≤ O(ε).

Lemma 2: Suppose there is a pseudopolynomial time
algorithm for the exact version of A, which runs in time
polynomial in n and t (t is the maximum integer in the
instance of A). Then, we can compute the values for these
configurations in time (nε)O(L).

From these two lemmas, Theorem 3 follows immediately.
Theorem 1 can be readily obtained from Theorem 3 and the
fact µ̃ is an ε-approximation of µ.
Proof of Theorem 1: Suppose S is our solution and S∗ is
the optimal solution for utility function µ. From Theorem 3,
we know that |E[µ̃(w(S))] ≥ E[µ̃(w(S∗))]| − ε. Since µ̃ is
an ε-approximation of µ, we can see that

∣∣E[µ(w(S))]− E[µ̃(w(S))]
∣∣ =

∣∣∣∫ (µ(x)− µ̃(x))pS(x)dx
∣∣∣

≤
∣∣∣∫ εpS(x)dx

∣∣∣ ≤ ε

Algorithm: ESUM

1. Initially, we slightly change function µ(x) to a new
function µ̂(x) as follows: We require µ̂(x) is a “smooth
” function in [−2Tε, 2Tε] such that µ̂(x) = µ(x) for all
x ∈ [0, Tε]; µ̂(x) = 0 for |x| ≥ 2Tε. We choose µ̂(x) in
[−2Tε, 0] and [Tε, 2Tε] such that µ̂(x) is smooth. We do
not specify the exact smoothness requirements now since
they may depend on the choice of AP. Note that there
may be many ways to interpolate µ such that the above
conditions are satisfied. The only properties we need are:
(1) µ̂ is amenable to algorithm AP; (2) |µ̂(x)− µ(x)| ≤
ε ∀x ≥ 0.
2. We apply AP to f(x) = ηxµ̂(x) over domain
[−hTε, hTε] (η ≥ 1 and h ≥ 2 are constants to be
determined later). Suppose the resulting exponential sum
f̂(x) =

∑L
i=1 ciφ

x
i which is an ε-approximation of f on

[−hTε, hTε].
3. Let µ̃(x) =

∑L
i=1 ci(

φi
η)x, which is our final approx-

imation of µ(x) on [0,∞).

for any solution S, where pS is the probability density
function of S. Therefore, we have

|E[µ(w(S))]| ≥ |E[µ̃(w(S))]| − ε ≥ |E[µ̃(w(S∗))]| − 2ε

≥ |E[µ(w(S∗))]| − 3ε

The proof is complete. 2

2.2. Approximating the Utility Function

In this subsection, we discuss the issue of approximating
µ. In particular, we develop a generic algorithm that takes as
a subroutine an algorithm AP for approximating functions
in a bounded interval domain, and approximates µ(x) in the
infinite domain [0,+∞). In the next subsection, we use the
Fourier series expansion as the choice of AP and show that
important classes of utility functions can be approximated
well.

There are many works on approximating functions using
short exponential sums, e.g., the Fourier decomposition
approach [48], Prony’s method [42], and many others [8],
[9]. However, their approximations are done over a finite
interval domain, say [−π, π] or over a finite number of
discrete points. No error bound can be guaranteed outside
the domain. Our algorithm is a generic procedure that turns
an algorithm that can approximate functions over [−π, π]
into one that can approximate our utility function µ over
[0,+∞), by utilizing the fact that limx→∞ µ(x) = 0.

Since limx→∞ µ(x) = 0, for any ε, there exist a point
Tε such that µ(x) ≤ ε ∀x > Tε. Since we assume the
utility function µ is specified as a part of the problem but
not a part of the input instance, Tε is a constant for any
constant ε. We also assume there is an algorithm AP that,

for any function f (under some conditions specified later),
can produce an exponential sum f̂(x) =

∑L
i=1 ciφ

x
i which

is an ε-approximation of f(x) in [−π, π] such that |φi| ≤ 1
and L depends only on ε and f . In fact, we can assume
w.l.o.g. that AP can approximate f(x) over [−B,B] for any
B = O(1). This is because we can apply AP to the scaled
version g(x) = f(x · Bπ) (which is defined on [−π, π]) and
then scale the obtained approximation ĝ(x) back to [−B,B],
i.e., the final approximation is f̂(x) = ĝ(πB · x). Scaling a
function by a constant factor B

π typically does not affect the
smoothness of f in any essential way and we can still apply
AP. Recall that our goal is to produce an exponential sum
that is an ε-approximation for µ(x) in [0,+∞). We denote
this procedure by ESUM.

By setting η = 2 and

h ≥
log(

∑L
i=1 |ci|/ε)
Tε

, (2)

we can show the following theorem.
Lemma 3: µ̃(x) is a 2ε-approximation of µ(x).

Proof: We know that |f̂(x)−f(x)| ≤ ε for x ∈ [0, hTε].
Therefore, we have that

|µ̃(x)− µ̂(x)| = | f̂(x)

ηx
− f(x)

ηx
| ≤ ε

ηx
≤ ε.

Combining with |µ̂(x) − µ(x)| ≤ ε, we obtain |µ̃(x) −
µ(x)| ≤ 2ε for x ∈ [0, hTε]. For x > hTε, we can see

|µ̃(x)| = |
L∑
i=1

ci(
φi
η

)x| ≤
L∑
i=1

|ci(
φi
η

)x|

≤ 1

2x

L∑
i=1

|ci| ≤
1

2hTε

L∑
i=1

|ci| ≤ ε

Since µ(x) < ε for x > hTε, the proof is complete. 2

Remark: Since we do not know ci before applying AP,
we need to set h to be a constant (only depending on µ
and ε) such that (2) is always satisfied. In particular, we
need to provide an upper bound for

∑L
i=1 |ci|. In the next

subsection, we use the Fourier series decomposition as the
choice for AP, which allows us to provide such a bound for
a large class of functions.

2.3. A Choice of AP: The Fourier Series Approach

Now, we discuss the choice of algorithm AP and the
conditions that f(x) needs to satisfy so that it is possible to
approximate f(x) by a short exponential sum in a bounded
interval. In fact, if we know in advance that there is a short
exponential sum that can approximate f , we can use the
algorithms developed in [9], [10] (for continuous case) and
[8] (for discrete case). However, those works do not provide
an easy characterization of the class of functions. From
now on, we restrict ourselves to the classic Fourier series

technique, which has been studied extensively and allows
such characterizations.

Consider the partial sum of the Fourier series of the func-
tion f(x): (SNf)(x) =

∑N
k=−N cke

ikx where the Fourier
coefficient ck = 1

2π

∫ π
−π f(x)e−ikxdx. It has L = 2N + 1

terms. Since f(x) is a real function, we have ck = c−k and
the partial sum is also real. We are interested in the question
under which conditions does the function SNf converge to
f (as N increases) and what is convergence rate? Roughly
speaking, the more “smooth” f is, the faster SNf converges
to f . In general, this question is extremely intricate and deep
and is one of the central topics in the area of harmonic
analysis. In the following, we give one classic result about
the convergence of Fourier series and show how to use it in
our problem. Then we provide a few concrete examples.

We say f satisfies the α-Hölder condition if |f(x) −
f(y)| ≤ C |x − y|α, for some constant C and α > 0 and
any x and y. The constant C is called the Hölder coefficient
of f , also denoted as |f |C0,α . We say f is C-Lipschitz if f
satisfies 1-Hölder condition with coefficient C.

We need the following classic result of Jackson.
Theorem 4: (See e.g., [44]) If f satisfies the α-Hölder

condition, it holds that

|f(x)− (SNf)(x)| ≤ O
(|f |C0,α lnN

Nα

)
.

For later development, we need a few simple lemmas. The
proofs are straightforward and thus omitted here.

Lemma 4: Suppose f : [a, c] → R is a continuous
function which consists of two pieces f1 : [a, b] → R and
f2 : [b, c] → R. If both f1 and f2 satisfy the α-Hölder
condition with Hölder coefficient C, then |f |C0,α ≤ 2C.

Lemma 5: Suppose f : [a, c] → R is a continuous
function satisfying the α-Hölder condition with Hölder co-
efficient C. Then, for g(x) = f(hx) for some constant h,
we have |g|C0,α ≤ Chα.

Using Theorem 4 and Lemma 5, we obtain the following
corollary.

Corollary 1: Suppose f ∈ C0[−hTε, hTε] satisfies
the α-Hölder condition with |f |C0,α = O(1) and
N = O

(
hTε(

1
ε log 1

ε)1/α
)
. Then, it holds that |f(x) −

(SNf)(x)| ≤ ε for x ∈ [−hTε, hTε].
Everything is in place to prove Theorem 2. Consider the

algorithm AP. If µ is α-Hölder with coefficient O(1), we can
construct µ̂ which is also α-Hölder with coefficient O(1),
by Lemma 4. Then, we can easily see that f(x) = ηxµ̂(x)
is also α-Hölder with coefficient O(1) in [−hTε, hTε] for
any η = 2. Hence, we can apply Corollary 1. By Lemma 3,
we complete the proof of Theorem 2.

How to Choose h: Recall from Section 2.2 that we need to
choose h (the value should be independent of cis and L)
to satisfy (2). In fact, if µ satisfies the α-Hölder condition
for some α > 1/2, we can choose h = O(1

Tε
log 1

ε). Please
refer to the full version of the paper [32] for the details.

3. APPLICATIONS

We first consider two utility functions χ(x) and χ̃(x) pre-
sented in the introduction. Note that maximizing E[χ(w(S))]
is equivalent to maximizing Pr(w(S) ≤ 1). The following
lemma is straightforward.

Lemma 6: For any solution S,

Pr(w(S) ≤ 1) ≤ E[χ̃(w(S))] ≤ Pr(w(S) ≤ 1 + δ).

By Theorem 1, Theorem 2 and Lemma 6, we can easily
obtain the following corollary.

Corollary 2: Suppose there is a pseudopolynomial time
algorithm for the exact version of A. Then, for any fixed
constants ε > 0 and δ > 0, there is an algorithm that runs
in time (nε)O(1

ε2
log 1

ε), and produces a solution S such that

Pr(w(S) ≤ 1 + δ) + ε ≥ max
S′∈F

Pr(w(S′) ≤ 1)

Now, let us see some applications of our general results to
specific problems.

Stochastic Shortest Path: Finding a path with the exact
target length (we allow non-simple paths)3 can be easily
done in pseudopolynomial time by dynamic programming.
Therefore, as discussed in Section 1.1, Corollary 2 gener-
alizes several results for stochastic shortest path in prior
work [41], [39].

Stochastic Spanning Tree: Our objective is to find a span-
ning tree T in the given probabilistic graph such that
Pr(w(T) ≤ 1) is maximized. Polynomial time algorithms
have been developed for Gaussian distributed edges [28],
[22]. To the best of our knowledge, no approximation
algorithm with provable guarantee is known for other dis-
tributions. Noticing there exists a pseudopolynomial time
algorithm for the exact spanning tree problem [6], we can
directly apply Corollary 2.

Stochastic k-Median on Trees: The problem asks for a set
S of k nodes in the given probabilistic tree G such that
Pr(
∑
v∈V (G) dis(v, S) ≤ 1) is maximized, where dis(v, S)

is the minimum distance from v to any node in S in the
tree metric. The k-median problem can be solved optimally
in polynomial time on trees by dynamic programming [29].
In fact, we can easily modify the dynamic program to get a
pseudopolynomial time algorithm for the exact version.

Stochastic Knapsack with Random Sizes: We are given a
set U of n items. Each item i has a random size wi and a
deterministic profit vi. We are also given a positive constant
0 ≤ γ ≤ 1. The goal is to find a subset S ⊆ U such that
Pr(w(S) ≤ 1) ≥ γ and the total profit v(S) =

∑
i∈S vi is

maximized.
If the profits of the items are polynomially bounded

integers, we can see the optimal profit is also a polynomially

3The exact version of simple path is NP-hard, since it includes the
Hamiltonian path problem as a special case.

bounded integer. We can first guess the optimal profit. For
each guess g, we solve the following problem: find a subset
S of items such that the total profit of S is exactly g
and E[χ̃(w(S))] is maximized. The exact version of the
deterministic problem is to find a solution S with a given
total size and a given total profit, which can be easily
solved in pseudopolynomial time by dynamic programming.
Therefore, by Corollary 2, we can easily show that we can
find in polynomial time a set S of items such that the total
profit v(S) is at least the optimum and Pr(w(S) ≤ 1+ ε) ≥
(1− ε)γ for any constant ε and γ.

If the profits are general integers, we can use the standard
scaling technique to get a (1−ε)-approximation for the total
profit. See the full version for the details. In sum, we have
obtained the following result.

Theorem 5: For any constants ε > 0 and γ > 0, there is
a polynomial time algorithm to compute a set S of items
such that the total profit v(S) is within a 1− ε factor of the
optimum and Pr(w(S) ≤ 1 + ε) ≥ (1− ε)γ.
Recently, Bhalgat et al. [12, Theorem 8.1] obtained the same
result, with a running time n2

poly(1/ε)

, while our running time
is (nε)O(1

ε2
log 1

ε) = npoly(1/ε).
Moreover, we can easily extend our algorithm to gen-

eralizations of the knapsack problem if the corresponding
exact version has a pseudopolynomial time algorithm. For
example, we can get the same result for the partial-ordered
knapsack problem with tree constraints [21], [45]. In this
problem, items must be chosen in accordance with speci-
fied precedence constraints and these precedence constraints
form a partial order and the underlining undirected graph is
a tree (or forest). A pseudopolynomial algorithm for this
problem is presented in [45].

Stochastic Knapsack with Random Profits: We are given
a set U of n items. Each item i has a deterministic size
wi and a random profit vi. The goal is to find a subset of
items that can be packed into a knapsack with capacity 1 and
the probability that the profit is at least a given threshold T
is maximized. Henig [27] and Carraway et al. [13] studied
this problem for normally distributed profits and presented
dynamic programming and branch and bound heuristics to
solve this problem optimally.

We can solve the equivalent problem of minimizing the
probability that the profit is at most the given threshold. It
is straightforward to modify our algorithm to work for the
minimization problem and we can also get an ε additive
error for any ε > 0. In fact, we can show that violation of
the capacity constraint is necessary unless P = NP . The
details can be found in the full version [32] of the paper .

Theorem 6: If the optimal probability is Ω(1), we can
find in polynomial time a subset S of items such that
Pr(v(S) > (1− ε)T) ≥ (1− ε)OPT and w(S) ≤ 1 + ε, for
any constant ε > 0.

4. EXTENSIONS

In this section, we discuss some extensions to our basic
approximation scheme. We first consider optimizing a con-
stant number of utility functions in Section 4.1. Then, we
study the problem where the weight of each element is a
random vector in Section 4.2.

4.1. Multiple Utility Functions

The problem we study in this section contains a set U
of n elements. Each element e has a random weight we.
We are also given d utility functions µ1, . . . , µd and d
positive numbers λ1, . . . , λd. We assume d is a constant. A
feasible solution consists of d subsets of elements that satisfy
some property. Our objective is to find a feasible solution
S1, . . . , Sd such that E[µi(w(Si))] ≥ λi for all 1 ≤ i ≤ d.

We can easily extend our basic approximation scheme to
the multiple utility functions case as follows. We decompose
these utility functions into short exponential sums using
ESUM as before. Then, for each utility function, we maintain
(n/ε)O(L) configurations. Therefore, we have (n/ε)O(dL)

configurations in total and we would like to compute the
values for these configurations. We denote the deterministic
version of the problem under consideration by A. The exact
version of A asks for a feasible solution S1, . . . , Sd such
that the total weight of Si is exactly the given number ti for
all i. Following an argument similar to Lemma 2, we can
easily get the following generalization of Theorem 1.

Theorem 7: Assume that there is a pseudopolynomial
algorithm for the exact version of A. Further assume that
given any ε > 0, we can ε-approximate each utility function
by an exponential sum with at most L terms. Then, there
is an algorithm that runs in time (n/ε)O(dL) and finds a
feasible solution S1, . . . , Sd such that E[µi(w(Si)] ≥ λi− ε
for 1 ≤ i ≤ d, if there is a feasible solution for the original
problem.

Now let us consider two simple applications of the above
theorem.

Stochastic Multiple Knapsack: In this problem we are
given a set U of n items, d knapsacks with capacity 1,
and d constants 0 ≤ γi ≤ 1. We assume d is a constant.
Each item i has a random size wi and a deterministic profit
vi. Our objective is to find d disjoint subsets S1, . . . , Sd
such that Pr(w(Si) ≤ 1) ≥ γi for all 1 ≤ i ≤ d
and

∑d
i=1 v(Si) is maximized. The exact version of the

problem is to find a packing such that the load of each
knapsack i is exactly the given value ti. It is not hard
to show this problem can be solved in pseudopolynomial
time by standard dynamic programming. If the profits are
general integers, we also need the scaling technique as in
stochastic knapsack with random sizes. In sum, we can get
the following generalization of Theorem 5.

Theorem 8: For any constants d ∈ N, ε > 0 and 0 ≤
γi ≤ 1 for 1 ≤ i ≤ d, there is a polynomial time algorithm

to compute d disjoint subsets S1, . . . , Sd such that the total
profit

∑d
i=1 v(Si) is within a 1 − ε factor of the optimum

and Pr(w(Si) ≤ 1 + ε) ≥ (1− ε)γi for 1 ≤ i ≤ d.

Stochastic Multidimensional Knapsack: In this problem
we are given a set U of n items and a constant 0 ≤
γ ≤ 1. Each item i has a deterministic profit vi and a
random size which is a random d-dimensional vector wi =
{wi1, . . . , wid}. We assume d is a constant. Our objective is
to find a subset S of items such that Pr(

∧d
j=1(

∑
i∈S wij ≤

1)) ≥ γ and total profit is maximized. This problem can
be also thought as the fixed set version of the stochastic
packing problem considered in [18], [12]. We first assume
the components of each size vector are independent. The
correlated case will be addressed in the next subsection.

For ease of presentation, we assume d = 2 from now
on. Extension to general constant d is straightforward. We
can solve the problem by casting it into a multiple utility
problem as follows. For each item i, we create two copies
i1 and i2. The copy ij has a random weight wij . A feasible
solution consists of two sets S1 and S2 such that S1 (S2)
only contains the first (second) copies of the elements and
S1 and S2 correspond to exactly the same subset of original
elements. We enumerate all such pairs (γ1, γ2) such that
γ1γ2 ≥ γ and γi ∈ [γ, 1] is a power of 1 − ε for i = 1, 2.
Clearly, there are a polynomial number of such pairs. For
each pair (γ1, γ2), we solve the following problem: find a
feasible solution S1, S2 such that Pr(

∑
i∈Sj wij ≤ 1) ≥ γj

for all j = 1, 2 and total profit is maximized. Using the
scaling technique and Theorem 7 for optimizing multiple
utility functions, we can get a (1 − ε)-approximation for
the optimal profit and Pr(

∧2
j=1(

∑
i∈Sj wij ≤ 1)) =∏2

j=1 Pr(
∑
i∈Sj wij ≤ 1) ≥ (1−O(ε))γ1γ2 ≥ (1−O(ε))γ.

We note that the same result for independent components
can be also obtained by using the discretization technique
developed for the adaptive version of the problem in [12]
4. If the components of each size vector are correlated,
we can not decompose the problem into two 1-dimensional
utilities as in the independent case. Now, we introduce a new
technique to handle the correlated case.

4.2. Multidimensional Weight

The general problem we study contains a set U of n
elements. Each element e has a random weight vector wi =
(wi1, . . . , wid). We assume d is a constant. We are also given
a utility functions µ : Rd → R+. A feasible solution is a
subset of elements satisfying some property. We use w(S) as
a shorthand notation for vector (

∑
i∈S wi1, . . . ,

∑
i∈S wid).

Our objective is to find a feasible solution S such that
E[µi(w(S)] is maximized.

From now on, x and k denote d-dimensional vectors
and kx (or k · x) denotes the inner product of k and

4With some changes of the discretization technique, the correlated case
can be also handled [11].

x. As before, we assume µ(x) ∈ [0, 1] for all x ≥ 0
and lim|x|→+∞ µ(x) = 0, where |x| = max(x1, . . . , xd),
Our algorithm is almost the same as in the one dimen-
sion case and we briefly sketch it here. We first notice
that expected utilities decompose for exponential utility
functions, i.e., E[φk·w(S)] =

∏
i∈S E[φk·wi]. Then, we

attempt to ε-approximate the utility function µ(x) by a
short exponential sum

∑
|k|≤N ckφ

kx
k (there are O(Nd)

terms). If this can be done, E[φk·w(S)] can be approxi-
mated by

∑
|k|≤N ckE[φk·w(S)]. Using the same argument

as in Theorem 1, we can show that there is a polynomial
time algorithm that can find a feasible solution S with
E[µ(w(S))] ≥ OPT − ε for any ε > 0, provided that a
pseudopolynomial algorithm exists for the exact version of
the deterministic problem.

To approximate the utility function µ(x), we need the
multidimensional Fourier series expansion of a function f :
Cd → C (assuming f is 2π-periodic in each axis): f(x) ∼∑
k∈Zd cke

ikx where ck = 1
(2π)d

∫
x∈[−π,π]d f(x)e−ikx dx.

The rectangular partial sum is defined to be

SNf(x) =
∑
|k1|≤N

. . .
∑
|kd|≤N

cke
ikx.

It is known that the rectangular partial sum SNf(x) con-
verges uniformly to f(x) in [−π, π]d for many function
classes as n tends to infinity. In fact, a generalization of
Theorem 4 to [−π, π]d also holds [4]: If f satisfies the α-
Hölder condition, then

|f(x)−(SNf)(x)| ≤ O
(|f |C0,α lndN

Nα

)
for x ∈ [−π, π]d.

Now, we have an algorithm AP that can approximate a
function in a bounded domain. It is also straightforward to
extend ESUM to the multidimensional case. Hence, we can
ε-approximate µ by a short exponential sum in [0,+∞)d,
thereby proving the multidimensional generalization of The-
orem 2. Let us consider an application of our result.

Stochastic Multidimensional Knapsack (Revisited): We
consider the case where the components of each weight
vector can be correlated. Note that the utility function
χ2 corresponding to this problem is the two dimensional
threshold function: χ2(x, y) = 1 if x ≤ 1 and y ≤ 1;
χ2(x, y) = 0 otherwise. As in the one dimensional case,
we need to consider a continuous version χ̃2 of χ2 (see
Figure 1(3)). By the result in this section and a generalization
of Lemma 6 to higher dimension, we can get the following.

Theorem 9: For any constants d ∈ N, ε > 0 and 0 ≤ γ ≤
1, there is a polynomial time algorithm for finding a set S
of items such that the total profit v(S) is 1− ε factor of the
optimum and Pr(

∧d
j=1(

∑
i∈S wij ≤ 1 + ε)) ≥ (1− ε)γ.

5. CONCLUSION

We considered the problem of maximizing expected util-
ity for many stochastic combinatorial problems, such as

shortest paths, spanning trees, matchings, and knapsack. We
developed a polynomial time approximation scheme with
additive error ε for any ε > 0. A key ingredient of our
algorithm is decomposition of the utility function into a short
exponential sum. In this paper, we use the Fourier series
technique to fulfill this task. Exploring other decomposition
approaches is an interesting direction for future work. Our
general approximation framework may be useful for other
stochastic optimization problems. One major open problem
is to obtain approximations with reasonable multiplicative
factors, or nontrivial inapproximability results, for the utility
maximization problem.

6. ACKNOWLEDGMENTS

We would like to thank Evdokia Nikolova for providing
an extended version of [41] and many helpful discussions.
We also would like to thank Chandra Chekuri for pointing
to us the recent work [12] and Anand Bhalgat for some
clarifications of the same work. This work was supported in
part by NSF Grant IIS-0916736, a DARPA grant, National
Basic Research Program of China Grants 2007CB807900,
2007CB807901, and the National Natural Science Founda-
tion of China Grants 61033001, 61061130540, 61073174.

REFERENCES

[1] “St. Petersburg paradox,” http://en.wikipedia.org/wiki/St.
Petersburg paradox.

[2] H. Ackermann, A. Newman, H. Röglin, and B. Vöcking,
“Decision making based on approximate and smoothed pareto
curves,” Algorithms and Computation, pp. 675–684, 2005.

[3] S. Agrawal, A. Saberi, and Y. Ye, “Stochastic Combinatorial
Optimization under Probabilistic Constraints,” Arxiv preprint
arXiv:0809.0460, 2008.

[4] S. Alimov, R. Ashurov, and A. Pulatov, “Multiple fourier se-
ries and fourier integrals, in commutative harmonic analysis.
IV: Harmonic analysis in Rn,” Encyclopedia of Mathematical
Science, vol. 42, 1992.

[5] N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and
A. Rudra, “When LP is the Cure for Your Matching Woes:
Improved Bounds for Stochastic Matchings,” European Sym-
posium on Algorithms, pp. 218–229, 2010.

[6] F. Barahona and W. Pulleyblank, “Exact arborescences,
matchings and cycles,” Discrete Applied Mathematics,
vol. 16, no. 2, pp. 91–99, 1987.

[7] J. Bard and J. Bennett, “Arc reduction and path preference in
stochastic acyclic networks,” Management Science, vol. 37,
no. 2, pp. 198–215, 1991.

[8] G. Beylkin and L. Monzón, “On Generalized Gaussian
Quadratures for Exponentials and Their Applications* 1,”
Applied and Computational Harmonic Analysis, vol. 12,
no. 3, pp. 332–373, 2002.

[9] ——, “On approximation of functions by exponential sums,”
Applied and Computational Harmonic Analysis, vol. 19,
no. 1, pp. 17–48, 2005.

[10] ——, “Approximation by exponential sums revisited,” Ap-
plied and Computational Harmonic Analysis, vol. 28, no. 2,
pp. 131–149, 2010.

[11] A. Bhalgat, 2011, personal Communication.

[12] A. Bhalgat, A. Goel, and S. Khanna, “Improved approxima-
tion results for stochastic knapsack problems,” in ACM-SIAM
Symposium on Discrete algorithms, 2011.

[13] R. Carraway, R. Schmidt, and L. Weatherford, “An algorithm
for maximizing target achievement in the stochastic knap-
sack problem with normal returns,” Naval research logistics,
vol. 40, no. 2, pp. 161–173, 1993.

[14] C. Chekuri and S. Khanna, “A PTAS for the multiple
knapsack problem,” in ACM-SIAM Symposium on Discrete
algorithms, 2000, pp. 213–222.

[15] N. Chen, N. Immorlica, A. Karlin, M. Mahdian, and A. Rudra,
“Approximating matches made in heaven,” International Col-
loquium on Automata, Languages and Programming, pp.
266–278, 2009.

[16] W. Cheney and W. Light, A Course in Approximation Theory.
Brook/Cole Publishing Company, 2000.

[17] R. Cheng, J. Chen, and X. Xie, “Cleaning uncertain data with
quality guarantees,” Proceedings of the VLDB Endowment,
vol. 1, no. 1, pp. 722–735, 2008.

[18] B. Dean, M. Goemans, and J. Vondrák, “Adaptivity and
approximation for stochastic packing problems,” in ACM-
SIAM Symposium on Discrete algorithms, 2005, pp. 395–404.

[19] B. Dean, M. Goemans, and J. Vondrak, “Approximating the
Stochastic Knapsack Problem: The Benefit of Adaptivity,”
Mathematics of Operations Research, vol. 33, no. 4, 2008.

[20] P. Fishburn, Utility Theory and Decision Making. John Wiley
& Sons, Inc, 1970.

[21] M. Garey and D. Johnson, “Computers and Intractability: A
Guide to the Theory of NP-Completeness”. W.H. Freeman,
1979.

[22] S. Geetha and K. Nair, “On stochastic spanning tree problem,”
Networks, vol. 23, no. 8, pp. 675–679, 1993.

[23] A. Goel and P. Indyk, “Stochastic load balancing and related
problems,” in Annual Symp. on Foundations of Computer
Science, 1999, p. 579.

[24] V. Goyal and R. Ravi, “Chance constrained knapsack problem
with random item sizes,” To appear in Operation Research
Letter, 2009.

[25] S. Guha and K. Munagala, “Adaptive Uncertainty Resolution
in Bayesian Combinatorial Optimization Problems,” To ap-
pear in ACM Transactions on Algorithms, 2008.

[26] A. Gupta, M. Pál, R. Ravi, and A. Sinha, “Boosted sampling:
approximation algorithms for stochastic optimization,” in
ACM Symp. on Theory of Computing, 2004, pp. 417–426.

[27] M. Henig, “Risk criteria in a stochastic knapsack problem,”
Operations Research, vol. 38, no. 5, pp. 820–825, 1990.

[28] H. Ishii, S. Shiode, and T. Nishida Yoshikazu, “Stochastic
spanning tree problem,” Discrete Applied Mathematics, vol. 3,
no. 4, pp. 263–273, 1981.

[29] O. Kariv and S. Hakimi, “An algorithmic approach to network
location problems. II: The p-medians,” SIAM Journal on
Applied Mathematics, vol. 37, no. 3, pp. 539–560, 1979.

[30] J. Kleinberg, Y. Rabani, and É. Tardos, “Allocating bandwidth
for bursty connections,” in ACM Symp. on Theory of Com-
puting, 1997, p. 673.

[31] J. Li and A. Deshpande, “Consensus answers for queries over
probabilistic databases,” in ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, 2009.

[32] ——, “Maximizing expected utility for stochastic
combinatorial optimization problems,” 2011,

http://arxiv.org/abs/1012.3189.
[33] J. Li, B. Saha, and A. Deshpande, “A unified approach to

ranking in probabilistic databases,” in Proceedings of the
VLDB Endowment, 2009.

[34] R. Loui, “Optimal paths in graphs with stochastic or multi-
dimensional weights,” Communications of the ACM, vol. 26,
no. 9, pp. 670–676, 1983.

[35] R. Martin, “The St. Petersburg Paradox,” The Stanford
Encyclopedia of Philosophy, 2004, http://plato.stanford.edu/
archives/fall2004/entries/paradox-stpetersburg.

[36] S. Mittal and A. Schulz, “A general framework for designing
approximation schemes for combinatorial optimization prob-
lems with many objectives combined into one,” Approxima-
tion, Randomization and Combinatorial Optimization. Algo-
rithms and Techniques, pp. 179–192, 2008.

[37] I. Murthy and S. Sarkar, “Exact algorithms for the stochastic
shortest path problem with a decreasing deadline utility
function,” European Journal of Operational Research, vol.
103, no. 1, pp. 209–229, 1997.

[38] ——, “Stochastic shortest path problems with piecewise-
linear concave utility functions,” Management Science,
vol. 44, no. 11, pp. 125–136, 1998.

[39] E. Nikolova, “Approximation Algorithms for Reliable
Stochastic Combinatorial Optimization,” International Work-
shop on Approximation Algorithms for Combinatorial Opti-
mization Problems, pp. 338–351, 2010.

[40] E. Nikolova, M. Brand, and D. Karger, “Optimal route
planning under uncertainty,” in Proceedings of International
Conference on Automated Planning and Scheduling, 2006.

[41] E. Nikolova, J. Kelner, M. Brand, and M. Mitzenmacher,
“Stochastic shortest paths via quasi-convex maximization,” in
European Symposium on Algorithms, 2006, pp. 552–563.

[42] M. R. Osborne and G. K. Smyth, “A modified prony algorithm
for fitting sums of exponential functions,” SIAM Journal of
Scientific Computing, 1995.

[43] C. Papadimitriou and M. Yannakakis, “On the approxima-
bility of trade-offs and optimal access of web sources,” in
Annual Symp. on Foundations of Computer Science, 2000.

[44] M. J. D. Powell, Approximation theory and methods. Cam-
bridge University Press, 1981.

[45] H. Safer, J. B. Orlin, and M. Dror, “Fully polynomial approx-
imation in multi-criteria combinatorial optimization,” 2004,
mIT Working Paper.

[46] D. Shmoys and C. Swamy, “An approximation scheme for
stochastic linear programming and its application to stochastic
integer programs,” J. ACM, vol. 53, no. 6, p. 1012, 2006.

[47] C. Sigal, A. Pritsker, and J. Solberg, “The stochastic shortest
route problem,” Operations Research, vol. 28, no. 5, pp.
1122–1129, 1980.

[48] E. Stein and R. Shakarchi, Fourier analysis: an introduction.
Princeton University Press, 2003.

[49] C. Swamy, “Risk-Averse Stochastic Optimization:
Probabilistically-Constrained Models and Algorithms
for Black-Box Distributions.” ACM-SIAM Symposium on
Discrete algorithms, 2010.

[50] C. Swamy and D. Shmoys, “Approximation algorithms for 2-
stage stochastic optimization problems,” ACM SIGACT News,
vol. 37, no. 1, p. 46, 2006.

[51] J. von Neumann and O. Morgenstern, Theory of Games and
Economic Behavior, 2nd ed. Princeton Univ. Press, 1947.

